-
1 case wiring
Железнодорожный термин: монтаж шкафов, релейный шкаф -
2 case wiring
-
3 case
1) контейнер; ящик; оболочка, чехол; кожух2) коробка (оконная, дверная); остов; камера4) футляр ( для инструментов)5) витрина7) обшивка; облицовка; рубашка8) оправа9) картер10) обойма (напр. резьбомера или набора щупов)11) корпус12) шкаф; сумка13) случай; положение; казус; иск14) обшивать; покрывать15) класть в ящик•to conduct a case in the arbitration commission — юр. вести дело в арбитражной комиссии
- air case- ambiguous case - arbitration case - balance case - boiler case - borderline case - cam case - camshaft case - carrying case - cartridge case - central-fire case - chain case - change gear case - circular scroll case - civil case - clearcut infringement case - clutch case - column case - crank case - differential case - door case - emergency case - engine case - fan case - gear case - glass case - hearing of a case - heart-shaped scroll case - heavy case - lock case - nitrided case - particular case - pelton wheel case - pump case - steam case - transfer case - transmission case - transmission gear case - variable speed case - weight case - wiring case* * *чехол, кожух- pump case
- scroll case -
4 wiring error
ошибка электромонтажа
-
[Интент]
ошибка в монтаже
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]
ошибка монтажа
—
[Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]Параллельные тексты EN-RU With the term “ bolted” reference is made to a fault in which two or more live parts at different potential get in touch; this is the case of phase-to-phase or phaseto-earth short-circuits to which the circulation of an anomalous current within the ring developed at the fault moment is associated.
In a bolted fault the most harmful effects are prevalently of electrodynamic type, proportional to I2, due to the high intensity of the current and to the low fault resistance involved (the medium in which the fault current flows is a conducting material).
[ABB]Под термином ошибка монтажа понимают ошибку, обусловленную контактом двух или более токоведущих частей, находящихся под разными потенциалами, что приводит к короткому замыканию типа фаза-фаза или фаза-земля и протеканию по цепи короткого замыкания аномального тока.
Вредное воздействие ошибки монтажа в основном сводится к электродинамическому воздействию, пропорциональному квадрату тока (I2), обусловленному большой силой тока и низким сопротивлением неправильно смонтированного участка электрической цепи (средой протекания аварийного тока является проводящий материал).
[Перевод Интент]Тематики
- НКУ (шкафы, пульты,...)
- электропроводка, электромонтаж
Синонимы
EN
Англо-русский словарь нормативно-технической терминологии > wiring error
-
5 wiring case
Американизм: соединительный шкаф -
6 wiring case
соединительный шкаф (напр. для электросоединений) -
7 wiring case
амер. соединительный шкаф -
8 lock case
- open-face case - outer case - pair case - pelton wheel case - plunger case - protective case - pump case - ram case - reverse gear case - reverser case - scroll case - sealed case - spindle case - spiral case - split case - steam case - study case - stuffing box case - test case - tool case - transfer case - transmission case - transmission gear case - valve case - variable feed case - variable speed case - weight case - wiring case -
9 capacitance
•-
actual capacitance
-
balanced capacitance
- barrier layer capacitance -
bit-line capacitance
-
body capacitance
-
cable capacitance
-
case capacitance
-
cathode interface-layer capacitance
-
cathode interface capacitance
-
charge capacitance
-
circuit capacitance
-
coil capacitance
-
concentrated capacitance
-
coupling capacitance
-
cross capacitance
-
depletion-layer capacitance
-
depletion capacitance
-
differential capacitance
-
diffusion capacitance
-
discontinuity capacitance
-
distributed capacitance
-
dynamic capacitance
-
effective capacitance
-
electrode capacitance
-
fringing capacitance
-
gap capacitance
-
ground capacitance
-
hand capacitance
-
hydraulic capacitance
-
incremental capacitance
-
input capacitance
-
input-to-output internal capacitance
-
input-to-output capacitance
-
interelectrode capacitance
-
interphase capacitance
-
interturn capacitance
-
interwinding capacitance
-
junction capacitance
-
lead capacitance
-
load capacitance
-
lumped capacitance
-
mutual capacitance
-
nonlinear element capacitance
-
output capacitance
-
parasitic capacitance
-
partial capacitance
-
rated capacitance
-
residual capacitance
-
self-capacitance
-
short-circuit input capacitance
-
short-circuit transfer capacitance
-
shunt capacitance
-
small-signal capacitance
-
spurious capacitance
-
storage capacitance
-
stray capacitance
-
stray wiring capacitance
-
target capacitance
-
terminal capacitance
-
total capacitance
-
transfer capacitance
-
tuning capacitance
-
voltage-controlled capacitance
-
voltage-dependent capacitance
-
voltage-variable capacitance
-
wiring capacitance -
10 system
1) система || системный3) вчт операционная система; программа-супервизор5) вчт большая программа6) метод; способ; алгоритм•system halted — "система остановлена" ( экранное сообщение об остановке компьютера при наличии серьёзной ошибки)
- CPsystem- H-system- h-system- hydrogen-air/lead battery hybrid system- Ksystem- Lsystem- L*a*b* system- master/slave computer system- p-system- y-system- Δ-system -
11 capacitance
- antenna capacitance
- barrier capacitance
- barrier-layer capacitance
- body capacitance
- case capacitance
- cathode interface capacitance
- cathode interface layer capacitance
- charge capacitance
- coil capacitance
- collector capacitance
- collector-base capacitance
- collector-junction capacitance
- collector-substrate capacitance
- collector-transition capacitance
- common-mode input capacitance
- depletion capacitance
- depletion-layer capacitance
- differential capacitance
- differential input capacitance
- diffusion capacitance
- diode capacitance
- direct capacitance
- direct-to-ground capacitance
- discontinuity capacitance
- distributed capacitance
- drain-source capacitance
- dynamic capacitance
- edge capacitance
- effective capacitance
- electrode capacitance
- electrostatic capacitance
- emitter capacitance
- emitter-base capacitance
- emitter-transition capacitance
- equivalent differential input capacitance
- feedback capacitance
- filament capacitance
- flat-band capacitance
- gap capacitance
- gate-drain capacitance
- gate-source capacitance
- geometric capacitance
- grid-cathode capacitance
- grid-ground capacitance
- grid-plate capacitance
- ground capacitance
- hand capacitance
- heterojunction capacitance
- high-frequency capacitance
- initial reversible capacitance
- input capacitance
- interelectrode capacitance
- interturn capacitance
- isolation capacitance
- junction capacitance
- layer capacitance
- load capacitance
- low-frequency capacitance
- lumped capacitance
- mutual capacitance
- negative capacitance
- node-to-node capacitance
- nonlinear capacitance
- output capacitance
- package capacitance
- parasitic capacitance
- plate-cathode capacitance
- plate-filament capacitance
- p-n junction capacitance
- punch-through capacitance
- residual capacitance
- reversible capacitance - short-circuit output capacitance
- short-circuit transfer capacitance
- sizable stray capacitance
- space-charge-layer capacitance
- spurious capacitance
- static capacitance
- storage capacitance
- straight-line capacitance
- stray capacitance
- substrate junction capacitance
- surface capacitance
- surface-state capacitance
- target capacitance
- terminal capacitance
- total electrode capacitance
- transfer capacitance
- transition capacitance
- transition-layer capacitance
- tuning capacitance
- voltage-controlled capacitance
- voltage-controlled negative capacitance
- voltage-dependent capacitance
- wiring capacitance -
12 capacitance
- antenna capacitance
- barrier capacitance
- barrier-layer capacitance
- body capacitance
- case capacitance
- cathode interface capacitance
- cathode interface layer capacitance
- charge capacitance
- coil capacitance
- collector capacitance
- collector-base capacitance
- collector-junction capacitance
- collector-substrate capacitance
- collector-transition capacitance
- common-mode input capacitance
- depletion capacitance
- depletion-layer capacitance
- differential capacitance
- differential input capacitance
- diffusion capacitance
- diode capacitance
- direct capacitance
- direct-to-ground capacitance
- discontinuity capacitance
- distributed capacitance
- drain-source capacitance
- dynamic capacitance
- edge capacitance
- effective capacitance
- electrode capacitance
- electrostatic capacitance
- emitter capacitance
- emitter-base capacitance
- emitter-transition capacitance
- equivalent differential input capacitance
- feedback capacitance
- filament capacitance
- flat-band capacitance
- gap capacitance
- gate-drain capacitance
- gate-source capacitance
- geometric capacitance
- grid-cathode capacitance
- grid-ground capacitance
- grid-plate capacitance
- ground capacitance
- hand capacitance
- heterojunction capacitance
- high-frequency capacitance
- initial reversible capacitance
- input capacitance
- interelectrode capacitance
- interturn capacitance
- isolation capacitance
- junction capacitance
- layer capacitance
- load capacitance
- low-frequency capacitance
- lumped capacitance
- mutual capacitance
- negative capacitance
- node-to-node capacitance
- nonlinear capacitance
- output capacitance
- package capacitance
- parasitic capacitance
- plate-cathode capacitance
- plate-filament capacitance
- p-n junction capacitance
- punch-through capacitance
- residual capacitance
- reversible capacitance - short-circuit output capacitance
- short-circuit transfer capacitance
- sizable stray capacitance
- space-charge-layer capacitance
- spurious capacitance
- static capacitance
- storage capacitance
- straight-line capacitance
- stray capacitance
- substrate junction capacitance
- surface capacitance
- surface-state capacitance
- target capacitance
- terminal capacitance
- total electrode capacitance
- transfer capacitance
- transition capacitance
- transition-layer capacitance
- tuning capacitance
- voltage-controlled capacitance
- voltage-controlled negative capacitance
- voltage-dependent capacitance
- wiring capacitanceThe New English-Russian Dictionary of Radio-electronics > capacitance
-
13 delay
1) задержка, запаздывание; отсрочка || задерживать; откладывать ( обработку данных)•- adjustable delay
- ambiguity delay
- analog-variable delays
- answering delay
- buck delay
- buffer delay
- cable delay
- carrier-storage delay
- cascade delay
- clock-to-output delay
- communication delay
- compensating delay
- condenser delay
- corrective delay
- cross-cluster delay
- cross-network delay
- cross-office delay
- dead-time delay
- delay in transit
- delay per logic function
- digit delay
- envelope delay
- external delay
- falling delay
- fall delay
- gate delay
- group delay
- I/O delay
- input-to-output delay
- inverse-time delay
- network delay
- operating delay
- packet delay
- phase delay
- pin-in-to-pin-out delay
- pin-to-pin delay
- post dialing delay
- post sending delay
- programmable delay
- propagation delay
- pulse time delay
- response delay
- ripple delay
- rise delay
- rising delay
- round-trip collision delay
- round-trip delay
- service delay
- setup delay
- stray delay
- time delay
- timed delay
- timing delay
- topological delay
- transmission delay
- unit delay
- wiring delay
- worst case delay
- zero delayEnglish-Russian dictionary of computer science and programming > delay
-
14 safety
надёжность; безопасность; предохранительное устройство; II безопасный; надёжный- safety actuation system - safety aid - safety alarm - safety air bag - safety area - safety arrangements - safety assurance - safety audit- road- safety block - safety car - safety chamber - safety chassis - safety check - safety code regulations - safety commander - safety committee - safety communication - safety conditions - safety control - safety cutoff - safety cushion - safety cutoff switch - safety cutout - safety cutout device - safety direction - safety disk - safety distance - safety drive torque device - safety education - safety element - safety enclosure - safety factor of insulation - safety feature - safety feed clutch - safety fence - safety-first engineering - safety first sign - safety flange - safety fuse - safety gap - safety goggles - safety guards - safety guidelines - safety guy - safety hat - safety hazard - safety helmet - safety hitch - safety index - safety inner tube - safety isle - safety joint - safety joint box - safety joint pin - safety key - safety lamp - safety lane - safety latch - safety level - safety light barrier - safety light curtain - safety limit - safety limit area access - safety limit switch - safety line - safety lock pin - safety locking bolt - safety margin - safety marking - safety mask - safety mat - safety measures - safety outlet - safety panel - safety precautions - safety pressure switch - safety rail - safety railing - safety ratio - safety regulation - safety regulator valve - safety relay - safety release - safety relief valve - safety risk - safety rod - safety rope - safety screen - safety screw - safety service - safety shutdown - safety side rail - safety sign - safety signal - safety slip clutch - safety specifications - safety spectacles - safety spring - safety stair - safety stop - safety stop dog - safety strap - safety strip - safety switch - safety system - safety system amplifier - safety system support features - safety tap chuck - safety thermal-relief valve - safety tips - safety tool - safety traffic - safety tread - safety trip cable - safety tyre - safety valve - safety valve nipple - safety valve of a hydraulic system - safety vent - safety washer - safety weight - safety winch - safety-wire - safety wiring - safety working area - safety working conditions - safety zone - active car safety - complete safety - electrical safety - electrical controlled fall safety - passive car safety - pedestrian safety - road safety -
15 bolted fault
глухое КЗ
металлическое КЗ
полное КЗ
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
Синонимы
EN
ошибка электромонтажа
-
[Интент]
ошибка в монтаже
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]
ошибка монтажа
—
[Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]Параллельные тексты EN-RU With the term “ bolted” reference is made to a fault in which two or more live parts at different potential get in touch; this is the case of phase-to-phase or phaseto-earth short-circuits to which the circulation of an anomalous current within the ring developed at the fault moment is associated.
In a bolted fault the most harmful effects are prevalently of electrodynamic type, proportional to I2, due to the high intensity of the current and to the low fault resistance involved (the medium in which the fault current flows is a conducting material).
[ABB]Под термином ошибка монтажа понимают ошибку, обусловленную контактом двух или более токоведущих частей, находящихся под разными потенциалами, что приводит к короткому замыканию типа фаза-фаза или фаза-земля и протеканию по цепи короткого замыкания аномального тока.
Вредное воздействие ошибки монтажа в основном сводится к электродинамическому воздействию, пропорциональному квадрату тока (I2), обусловленному большой силой тока и низким сопротивлением неправильно смонтированного участка электрической цепи (средой протекания аварийного тока является проводящий материал).
[Перевод Интент]Тематики
- НКУ (шкафы, пульты,...)
- электропроводка, электромонтаж
Синонимы
EN
Англо-русский словарь нормативно-технической терминологии > bolted fault
-
16 continuous current-carrying capacity
длительная пропускная способность по току
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
EN
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
Англо-русский словарь нормативно-технической терминологии > continuous current-carrying capacity
-
17 ampacity (US)
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
Англо-русский словарь нормативно-технической терминологии > ampacity (US)
-
18 continuous current
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
непрерывный ток
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]Тематики
- электротехника, основные понятия
EN
Англо-русский словарь нормативно-технической терминологии > continuous current
-
19 current-carrying capacity
(длительный) допустимый ток
Максимальное значение электрического тока, который может протекать длительно по проводнику, устройству или аппарату при определенных условиях без превышения определенного значения их температуры в установившемся режиме
[ ГОСТ Р МЭК 60050-826-2009]
Этот ток обозначают IZ
[ ГОСТ Р 50571. 1-2009 ( МЭК 60364-1: 2005)]EN
(continuous) current-carrying capacity
ampacity (US)
maximum value of electric current which can be carried continuously by a conductor, a device or an apparatus, under specified conditions without its steady-state temperature exceeding a specified value
[IEV number 826-11-13]
ampacity
The current in amperes that a conductor can carry continuously under the conditions of use without exceeding its temperature rating.
[National Electrical Cod]FR
courant (permanent) admissible, m
valeur maximale du courant électrique qui peut parcourir en permanence, un conducteur, un dispositif ou un appareil, sans que sa température de régime permanent, dans des conditions données, soit supérieure à la valeur spécifiée
[IEV number 826-11-13]Ampacity, the term is defined as the maximum amount of current a cable can carry before sustaining immediate or progressive deterioration. Also described as current rating or current-carrying capacity, is the RMS electric current which a device can continuously carry while remaining within its temperature rating. The ampacity of a cable depends on:
- its insulation temperature rating;
- conductor electrical properties for current;
- frequency, in the case of alternating currents;
- ability to dissipate heat, which depends on cable geometry and its surroundings;
- ambient temperature.
Electric wires have some resistance, and electric current flowing through them causes voltage drop and power dissipation, which heats the cable. Copper or aluminum can conduct a large amount of current before melting, but long before the conductors melt, their insulation would be damaged by the heat.
The ampacity for a power cable is thus based on physical and electrical properties of the material & construction of the conductor and of its insulation, ambient temperature, and environmental conditions adjacent to the cable. Having a large overall surface area may dissipate heat well if the environment can absorb the heat.
In a long run of cable, different conditions govern, and installation regulations normally specify that the most severe condition along the run governs the cable's rating. Cables run in wet or oily locations may carry a lower temperature rating than in a dry installation. Derating is necessary for multiple circuits in close proximity. When multiple cables are near, each contributes heat to the others and diminishes the amount of cooling air that can flow past the individual cables. The overall ampacity of the insulated conductors in a bundle of more than 3 must be derated, whether in a raceway or cable. Usually the de-rating factor is tabulated in a nation's wiring regulations.
Depending on the type of insulating material, common maximum allowable temperatures at the surface of the conductor are 60, 75 and 90 degrees Celsius, often with an ambient air temperature of 30°C. In the U.S., 105°C is allowed with ambient of 40°C, for larger power cables, especially those operating at more than 2 kV. Likewise, specific insulations are rated 150, 200 or 250°C.
The allowed current in cables generally needs to be decreased (derated) when the cable is covered with fireproofing material.
For example, the United States National Electric Code, Table 310-16, specifies that up to three 8 AWG copper wires having a common insulating material (THWN) in a raceway, cable, or direct burial has an ampacity of 50 A when the ambient air is 30°C, the conductor surface temperature allowed to be 75°C. A single insulated conductor in air has 70 A rating.
Ampacity rating is normally for continuous current, and short periods of overcurrent occur without harm in most cabling systems. The acceptable magnitude and duration of overcurrent is a more complex topic than ampacity.
When designing an electrical system, one will normally need to know the current rating for the following:- Wires
- Printed Circuit Board traces, where included
- Fuses
- Circuit breakers
- All or nearly all components used
Some devices are limited by power rating, and when this power rating occurs below their current limit, it is not necessary to know the current limit to design a system. A common example of this is lightbulb holders.
[http://en.wikipedia.org/wiki/Ampacity]
Тематики
- электротехника, основные понятия
Синонимы
EN
DE
- Dauerstrombelastbarkeit, f
- Strombelastbarkeit, f
FR
- courant admissible, m
- courant permanent admissible, m
предельно допустимый ток
—
[Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]Тематики
- электротехника, основные понятия
EN
прочность печатной платы к токовой нагрузке
Свойство печатной платы сохранять электрические и механические характеристики после воздействия максимально допустимой токовой нагрузки на печатный проводник или металлизированное отверстие печатной платы.
[ ГОСТ Р 53386-2009]Тематики
EN
Англо-русский словарь нормативно-технической терминологии > current-carrying capacity
-
20 instructions for handling, installation, operation and maintenance
- инструкции по монтажу, эксплуатации и техническому обслуживанию (НКУ)
инструкции по монтажу, эксплуатации и техническому обслуживанию (НКУ)
-
[ ГОСТ Р МЭК 61439.1-2013]Параллельные тексты EN-RU
6.2.2 Instructions for handling, installation, operation and maintenance
The ASSEMBLY manufacturer shall provide in documents or catalogues the conditions, if any, for the handling, installation, operation and maintenance of the ASSEMBLY and the equipment contained therein.
If necessary, the instructions shall indicate the measures that are of particular importance for the proper and correct transport, handling, installation and operation of the ASSEMBLY.
The provision of weight details is of particular importance in connection with the transport and handling of ASSEMBLIES.
The correct location and installation of lifting means and the thread size of lifting attachments, if applicable, shall be given in the ASSEMBLY manufacturer's documentation or the instructions on how the ASSEMBLY has to be handled.
The measures to be taken, if any, with regard to EMC associated with the installation, operation and maintenance of the ASSEMBLY shall be specified (see Annex J).
If an ASSEMBLY specifically intended for environment A is to be used in environment B the following warning shall be included in the operating instructions:
CAUTION
This product has been designed for environment A. Use of this product in environment B may cause unwanted electromagnetic disturbances in which case the user may be required to take adequate mitigation measures.
Where necessary, the above-mentioned documents shall indicate the recommended extent and frequency of maintenance.
If the circuitry is not obvious from the physical arrangement of the apparatus installed, suitable information shall be supplied, for example wiring diagrams or tables.
[BS EN 61439-1:2009]6.2.2 Инструкции по монтажу, эксплуатации и техническому обслуживанию
Изготовитель НКУ в своей документации или каталожной информации, при необходимости, должен указать условия монтажа, эксплуатации и технического обслуживания НКУ и оборудования, содержащегося в нем.
Если необходимо, в инструкциях должны быть указаны специальные условия правильного транспортирования, монтажа, эксплуатации и функционирования НКУ.
При этом, указание веса представляет особую важность в связи с транспортированием и эксплуатацией НКУ.
Правильное размещение и порядок монтажа подъемных средств, а также размер резьбы арматуры для грузоподъемных работ при их применении должны быть указаны в инструкции по монтажу и эксплуатации изготовителя НКУ.
Если необходимо, должны быть указаны предпринимаемые меры, касающиеся ЭМС, при монтаже, эксплуатации и техническом обслуживании НКУ (см. приложение J).
Если НКУ, предназначенное для применения в окружающей среде А, необходимо использовать в окружающей среде В, в инструкцию по эксплуатации должно быть включено следующее предостережение:
ВНИМАНИЕ
Данное изделие рассчитано на применение в условиях окружающей среды А. Применение данного изделия в окружающей среде В может вызвать нежелательные электромагнитные помехи, в этом случае потребитель должен обеспечить соответствующую защиту другого оборудования.
При необходимости в документации могут быть указаны рекомендуемый объем и частота технического обслуживания.
Если принципиальная электрическая схема не очевидна по физическому размещению установленного оборудования, то должна быть представлена соответствующая информация в виде схем соединений или таблиц.]
[ ГОСТ Р МЭК 61439.1-2013]
Тематики
- НКУ (шкафы, пульты,...)
EN
- instructions for handling, installation, operation and maintenance
Англо-русский словарь нормативно-технической терминологии > instructions for handling, installation, operation and maintenance
См. также в других словарях:
Electrical wiring (UK) — The modern UK standards and regulations for electrical wiring no longer differ substantially from those in other European countries. However, there are a number of noteworthy national peculiarities, habits and traditions associated with domestic… … Wikipedia
Electrical wiring in Hong Kong — This article exists to give readers an insight into electrical wiring in Hong Kong. Contents 1 Overview 2 Case specific analysis 2.1 Mainland China two pin plugs 2.2 … Wikipedia
Electrical wiring (United States) — Electrical wiring in general refers to conductors used to carry electricity and their accessories. General aspects of electrical wiring as used to provide power in or to buildings and structures, commonly referred to as building wiring, are… … Wikipedia
List of Case Closed episodes (season 11) — The cover of the first DVD compilation for season eleven of Detective Conan released by Shogakukan The tenth season of the Case Closed anime was directed by Kenji Kodama and Yasuichiro Yamamoto and produced by TMS Entertainment and Yomiuri… … Wikipedia
Live from Austin, TX (Neko Case album) — Infobox Album | Name = Live from Austin, TX Type = Live album Artist = Neko Case Released = January 9, 2007 Recorded = August 9, 2003, Austin City Limits , Austin, Texas Genre = Alternative country Length = Label = New West Records Producer =… … Wikipedia
GPO telephones — The United Kingdom s General Post Office (GPO) had a number of telephones that were provided by them for connection to their exchanges. Until 1982 the GPO had a monopoly on the provision of all telephones within the UK and so the range was… … Wikipedia
Ground and neutral — For uses of the term ground or earth in electricity but not in the context of mains wiring, see ground (electricity). Since the neutral point of an electrical supply system is often connected to earth ground, ground and neutral are closely… … Wikipedia
Copper wire and cable — Copper has been used in electric wiring since the invention of the electromagnet and the telegraph in the 1820s.[1][2] The invention of the telephone in 1876 proved to be another early boon for copper wire.[3] Today, despite competition from… … Wikipedia
Cryptanalysis of the Enigma — enabled the western Allies in World War II to read substantial amounts of secret Morse coded radio communications of the Axis powers that had been enciphered using Enigma machines. This yielded military intelligence which, along with that from… … Wikipedia
Residual-current device — A two pole residual current device A Residual Current Device is a generic term covering both RCCBs and RCBOs. A Residual Current Circuit Breaker (RCCB) is an electrical wiring device that disconnects a circuit whenever it detects that the… … Wikipedia
building construction — Techniques and industry involved in the assembly and erection of structures. Early humans built primarily for shelter, using simple methods. Building materials came from the land, and fabrication was dictated by the limits of the materials and… … Universalium